\qquad
1.) What heat must be added to a sample of 14.2 grams of iron to raise the sample's temperature from $12{ }^{\circ} \mathrm{C}$ to $48^{\circ} \mathrm{C}$? Given the specific heat of iron is $0.444 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, and using $q=m \times C_{s} \times \Delta T(2 p t s)$
2.) If 372 J of heat was put into a 5.0 gram sample of an unknown metal and caused a change in temperature of $11.2^{\circ} \mathrm{C}$, what is the specific heat of the unknown metal? Using $\mathrm{q}=\mathrm{m} \times \mathrm{C}_{\mathrm{s}} \times \Delta \mathrm{T}(2 \mathrm{pts})$
3.) What is the difference between what the specific heat capacity $\left(C_{s}\right)$ is measuring and what the molar heat capacity ($\mathrm{C}_{\mathrm{mol}}$) is measuring? What are the units for each? (2 pts)
4.) A red laser pointer operates at a wavelength of 532 nm , what is the frequency of that laser light? Given the speed of light is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and using $\mathrm{c}=\mathrm{v} \lambda$ (2 points)
5.) What is the energy of that green light given off by the laser? Given Planck's constant (h) is $6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ and $\mathrm{E}=\mathrm{hv}(2 \mathrm{pts})$
\qquad
1.) What heat must be added to a sample of 10.2 grams of silver to raise the sample's temperature from $18{ }^{\circ} \mathrm{C}$ to $48^{\circ} \mathrm{C}$? Given the specific heat of silver is $0.233 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, and using $q=m \times C_{s} \times \Delta T(2 p t s)$
2.) If 280 J of heat was put into a 5.0 gram sample of an unknown metal and caused a change in temperature of $6.2^{\circ} \mathrm{C}$, what is the specific heat of the unknown metal? Using $q=m \times C_{s} \times \Delta T(2 p t s)$
3.) What is the difference between what the specific heat capacity $\left(C_{s}\right)$ is measuring and what the molar heat capacity ($\mathrm{C}_{\mathrm{mol}}$) is measuring? What are the units for each? (2 pts)
4.) A red laser pointer operates at a wavelength of 645 nm , what is the frequency of that laser light? Given the speed of light is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and using $\mathrm{c}=\mathrm{v} \lambda$ (2 points)
5.) What is the energy of that red light given off by the laser? Given Planck's constant (h) is $6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ and $\mathrm{E}=\mathrm{hv}(2 \mathrm{pts})$

