Practice Exam \#2 Chapters 2 and 3

1) When the following equation is balanced, the coefficients are \qquad _.

$$
\mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

A) $2,3,4,4$
B) $1,4,8,9$
C) $2,12,8,9$
D) $4,4,32,36$
E) $2,25,16,18$
2) Which of the following are combustion reactions?

1) $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
2) $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
3) $\mathrm{PbCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{PbO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
4) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A) 1 and 4
B) 1, 2, 3, and 4
C) 1,3 , and 4
D) 2, 3, and 4
E) 3 and 4
5) The molecular weight of the acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$, rounded to the nearest integer, is \qquad amu.
A) 60
B) 48
C) 44
D) 32
6) Calculate the percentage by mass of lead in $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$.
A) 38.6
B) 44.5
C) 62.6
D) 65.3
E) 71.2
7) How many molecules of CH_{4} are in 48.2 g of this compound?
A) 5.00×10^{24}
B) 3.00
C) 2.90×10^{25}
D) 1.81×10^{24}
E) 4.00
8) How many sulfur dioxide molecules are there in 1.80 mol of sulfur dioxide?
A) 1.08×10^{23}
B) 6.02×10^{24}
C) 1.80×10^{24}
D) 1.08×10^{24}
E) 6.02×10^{23}
9) How many oxygen atoms are there in 52.06 g of carbon dioxide?
A) 1.424×10^{24}
B) 6.022×10^{23}
C) 1.204×10^{24}
D) 5.088×10^{23}
E) 1.018×10^{24}
10) Of the reactions below, which one is a decomposition reaction?
A) $\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{3}+\mathrm{HCl}$
B) $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
C) $2 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
D) $2 \mathrm{CH}_{4}+4 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
E) $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Na}_{2} \mathrm{~S} \rightarrow \mathrm{CdS}+2 \mathrm{NaNO}_{3}$
11) Which one of the following substances is the product of this combination reaction?

$$
\mathrm{Al}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{~s}) \rightarrow
$$

A) AlI_{2}
B) AlI
C) AlI_{3}
D) $\mathrm{Al}_{2} \mathrm{I}_{3}$
E) $\mathrm{Al}_{3} \mathrm{I}_{2}$
10) The formula weight of lead nitrate $\left(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\right)$ is \qquad amu.
A) 269.2
B) 285.2
C) 317.2
D) 331.2
E) 538.4
11) A nitrogen oxide is 63.65% by mass nitrogen. The molecular formula could be \qquad .
A) NO
B) NO_{2}
C) $\mathrm{N}_{2} \mathrm{O}$
D) $\mathrm{N}_{2} \mathrm{O}_{4}$
E) either NO_{2} or $\mathrm{N}_{2} \mathrm{O}_{4}$
12) The balanced molecular equation for complete neutralization of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by KOH in aqueous solution is \qquad -
A) $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B) $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{~K}^{+}(\mathrm{aq})$
C) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})$
D) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{~s})$
E) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
13) Aqueous potassium chloride will react with which one of the following in an exchange (metathesis) reaction?
A) calcium nitrate
B) sodium bromide
C) lead nitrate
D) barium nitrate
E) sodium chloride
14) The net ionic equation for formation of an aqueous solution of NiI_{2} accompanied by evolution of CO_{2} gas via mixing solid NiCO_{3} and aqueous hydriodic acid is \qquad _.
A) $2 \mathrm{NiCO}_{3}(\mathrm{~s})+\mathrm{HI}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Ni}^{2+}(\mathrm{aq})$
B) $\mathrm{NiCO}_{3}(\mathrm{~s})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{HI}(\mathrm{aq})$
C) $\mathrm{NiCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Ni}^{2+}(\mathrm{aq})$
D) $\mathrm{NiCO}_{3}(\mathrm{~s})+2 \mathrm{HI}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NiI}_{2}(\mathrm{aq})$
$\mathrm{E}) \mathrm{NiCO}_{3}(\mathrm{~s})+2 \mathrm{HI}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})$
15) With which of the following will the ammonium ion form an insoluble salt?
A) chloride
B) sulfate
C) carbonate
D) sulfate and carbonate
E) none of the above
16) Which one of the following is a diprotic acid?
A) nitric acid
B) chloric acid
C) phosphoric acid
D) hydrofluoric acid
E) sulfuric acid
17) In which reaction does the oxidation number of hydrogen change?
A) $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)$
B) $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
C) $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
D) $2 \mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
E) $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
18) Sodium does not occur in nature as Na (s) because \qquad .
A) it is easily reduced to Na^{-}
B) it is easily oxidized to Na^{+}
C) it reacts with water with great difficulty
D) it is easily replaced by silver in its ores
E) it undergoes a disproportionation reaction to Na^{-}and Na^{+}
19) Oxidation is the \qquad and reduction is the \qquad .
A) gain of oxygen, loss of electrons
B) loss of oxygen, gain of electrons
C) loss of electrons, gain of electrons
D) gain of oxygen, loss of mass
E) gain of electrons, loss of electrons
20) In which reaction does the oxidation number of oxygen increase?
A) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}$ (aq)
B) $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)$
C) $\mathrm{MgO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$
D) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
E) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
21) Which compound has the atom with the highest oxidation number?
A) CaS
B) $\mathrm{Na}_{3} \mathrm{~N}$
C) MgSO_{3}
D) $\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}$
E) $\mathrm{NH}_{4} \mathrm{Cl}$
22) Which combination will produce a precipitate?
A) $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$
B) $\mathrm{AgNO}_{3}(\mathrm{aq})$ and $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq})$
C) $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$
D) $\mathrm{NaCl}(\mathrm{aq})$ and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
E) $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$ (aq)
23) When the following equation is balanced, the coefficients are \qquad .

$$
\ldots \ldots \mathrm{Al}^{2}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+\ldots \mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \ldots \mathrm{Al}_{2} \mathrm{~S}_{3}(\mathrm{~s})+\ldots \ldots \mathrm{NaNO}_{3}(\mathrm{aq})
$$

24) Calculate the percentage by mass of nitrogen in $\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}$.
25) Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ reacts with oxygen in the air to produce carbon dioxide and water. In a particular experiment, 38.0 grams of carbon dioxide are produced from the reaction of 22.05 grams of propane with excess oxygen. What is the percent yield in this reaction?

26a.) Given the following balanced chemical equation, if you consumed 0.642 moles of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ in the reaction, how many moles of CO_{2} would be made?

26b.) If 42 grams of water were produced in this reaction, how many grams of O_{2} were consumed?

$$
\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

27) What is the molecular, ionic, and net ionic equation for the reaction between aqueous sulfuric acid and aqueous sodium hydroxide:

Molecular equation:

Ionic Equation:

Net Ionic Equation:

28a.) If you need to make a 1 L solution of $1.25 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer, how many grams of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (142 $\mathrm{g} / \mathrm{mol}$) would you have to add to make that 1 L solution?

28b.) How many milliliters of that solution 1.25 M solution would you need if you then had to make a 2 L solution that was $0.16 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$?

Key Equations:

$M_{i} V_{i}=M_{f} V_{f} \quad$ Molarity $=\frac{\text { moles }}{\text { liter }}$
$\%$ Mass composition $=\frac{(\text { number of atoms of element) }(\text { atomic weight of element })}{\text { formula weight of the compound }} \times 100$
$\%$ Yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100$

Periodic Table of the Elements

Main Group Representative Elements													Main Group Representative Elements					
	$\begin{gathered} 1 \mathrm{~A}^{\mathrm{a}} \\ 1 \end{gathered}$																	$\begin{aligned} & 8 \mathrm{~A} \\ & 18 \end{aligned}$
1	$\begin{gathered} 1 \\ \mathbf{H} \\ 1.00794 \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ 2 \end{gathered}$											$\begin{aligned} & 3 \mathrm{~A} \\ & 13 \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} \\ & 14 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \\ & 15 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~A} \\ & 16 \end{aligned}$	$\begin{aligned} & 7 \mathrm{~A} \\ & 17 \end{aligned}$	
2	$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.941 \end{gathered}$	4 $\mathbf{B e}$ 9.012182			Metals		Me Transitio	lloids metals		Nonm			$\begin{array}{\|c} \hline 5 \\ \mathbf{B} \\ 10.811 \\ \hline \end{array}$	$\begin{gathered} 6 \\ \text { C } \\ 12.0107 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.0067 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{O} \\ 15.9994 \end{gathered}$	9 F 18.998403	10 Ne 20.1797
3	$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.989770 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.3050 \end{gathered}$	$\begin{aligned} & 3 \mathrm{~B} \\ & 3 \end{aligned}$	$\begin{gathered} \text { 4B } \\ 4 \end{gathered}$	$\begin{gathered} \text { 5B } \\ 5 \end{gathered}$	$\begin{aligned} & 6 B \\ & 6 \\ & \hline \end{aligned}$	$\begin{gathered} 7 B \\ 7 \end{gathered}$	$\begin{aligned} & \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} -8 \mathrm{~B} \\ 9 \\ \hline \end{gathered}$	10	$\begin{aligned} & 1 \mathrm{~B} \\ & 11 \end{aligned}$	$\begin{aligned} & 2 \mathrm{~B} \\ & 12 \end{aligned}$	13 Al 26.981538	14 $\mathbf{S i}$ 28.0855	15 \mathbf{P} 30.973761	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.065 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ 35.453 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.948 \end{gathered}$
4	$\begin{gathered} 19 \\ \mathbf{K} \\ 39.0983 \end{gathered}$	$\begin{gathered} 20 \\ \text { Ca } \\ 40.078 \end{gathered}$	21 Sc 44.955910	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.867 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.9415 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 51.9961 \end{gathered}$	25 $\mathbf{M n}$ 54.938049	$\begin{gathered} 26 \\ \text { Fe } \\ 55.845 \end{gathered}$	27 Co 58.933200	$\begin{gathered} 28 \\ \mathrm{Ni} \\ 58.6934 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.546 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.723 \end{gathered}$	$\begin{gathered} \hline 32 \\ \mathrm{Ge} \\ 72.64 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92160 \\ \hline \end{gathered}$	$\begin{gathered} 34 \\ \text { Se } \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.904 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
5	$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.4678 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{array}{\|c\|} \hline 39 \\ \mathbf{Y} \\ 88.90585 \\ \hline \end{array}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.224 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 41 \\ \mathbf{N b} \\ 92.90638 \\ \hline \end{array}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	43 Tc [98]	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	45 $\mathbf{R h}$ 102.90550	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \\ \hline \end{gathered}$	47 $\mathbf{A g}$ 107.8682	$\begin{gathered} \hline 48 \\ \text { Cd } \\ 112.411 \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.818 \\ \hline \end{gathered}$	50 Sn 118.710	$\begin{array}{\|c\|} \hline 51 \\ \mathbf{S b} \\ 121.760 \end{array}$	$\begin{gathered} 52 \\ \mathbf{T e} \\ 127.60 \end{gathered}$	53 I 126.90447	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.293 \\ \hline \end{gathered}$
6	$\begin{gathered} 55 \\ \text { Cs } \\ 132.90545 \\ \hline \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.327 \\ \hline \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.967 \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 73 \\ \mathbf{T a} \\ 180.9479 \\ \hline \end{array}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.84 \end{gathered}$	$\begin{gathered} 75 \\ \boldsymbol{R e} \\ 186.207 \\ \hline \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.23 \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.217 \\ \hline \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.078 \end{gathered}$	79 $\mathbf{A u}$ 196.96655	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	81 $\mathbf{T l}$ 204.3833	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98038 \\ \hline \end{gathered}$	84 Po $[208.98]$	$\begin{gathered} 85 \\ \text { At } \\ {[209.99]} \end{gathered}$	86 $\mathbf{R n}$ $[222.02]$
7	$\begin{gathered} 87 \\ \mathbf{F r} \\ {[223.02]} \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ {[226.03]} \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ {[262.11]} \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ {[261.11]} \end{gathered}$	$\begin{gathered} 105 \\ \text { Db } \\ {[262.11]} \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ {[266.12]} \end{gathered}$	$\begin{gathered} 107 \\ \mathbf{B h} \\ {[264.12]} \end{gathered}$	$\begin{gathered} 108 \\ \text { Hs } \\ {[269.13]} \end{gathered}$	$\begin{gathered} 109 \\ \mathbf{M t} \\ {[268.14]} \end{gathered}$	$\begin{gathered} 110 \\ \text { Ds } \\ {[281.15]} \end{gathered}$	$\begin{gathered} 111 \\ \mathbf{R g} \\ {[272.15]} \\ \hline \end{gathered}$	$\begin{gathered} 112 \\ \text { Cn } \\ {[285]} \end{gathered}$	$\begin{gathered} 113 \\ {[284]} \end{gathered}$	114 [289]	$\begin{aligned} & 115 \\ & {[288]} \end{aligned}$	$\begin{gathered} 116 \\ {[292]} \end{gathered}$	$\begin{gathered} 117 \\ * * \\ {[294]} \end{gathered}$	118 $[294]$

Lanthanide series	$\begin{array}{\|c\|} \hline 57 \\ \mathbf{L a} \\ 138.9055 \end{array}$	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.116 \end{gathered}$	$\begin{array}{\|c\|} \hline 59 \\ \text { Pr } \\ 140.90765 \\ \hline \end{array}$	$\begin{gathered} 60 \\ \text { Nd } \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ {[145]} \end{gathered}$	$\begin{gathered} 62 \\ \text { Sm } \\ 150.36 \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.964 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{array}{\|c\|} \hline 65 \\ \mathbf{T b} \\ 158.92534 \\ \hline \end{array}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \text { Ho } \\ 164.93032 \end{array}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.259 \end{gathered}$	$\begin{array}{\|c\|} \hline 69 \\ \mathbf{T m} \\ 168.93421 \end{array}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$
Actinide series		$\begin{array}{\|c\|} \hline 90 \\ \text { Th } \\ 232.0381 \\ \hline \end{array}$	91 Pa 231.03588	92 \mathbf{U} 238.02891				$\begin{gathered} 96 \\ \mathrm{Cm} \\ {[247.07]} \end{gathered}$	$\begin{gathered} 97 \\ \mathbf{B k} \\ {[247.07]} \end{gathered}$					

