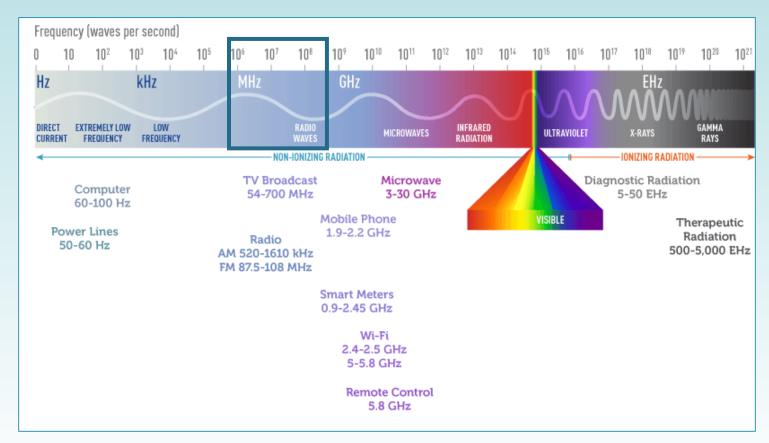
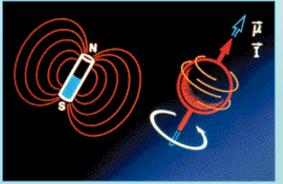
NMR I: KETO ENOL TAUTOMERIZATION

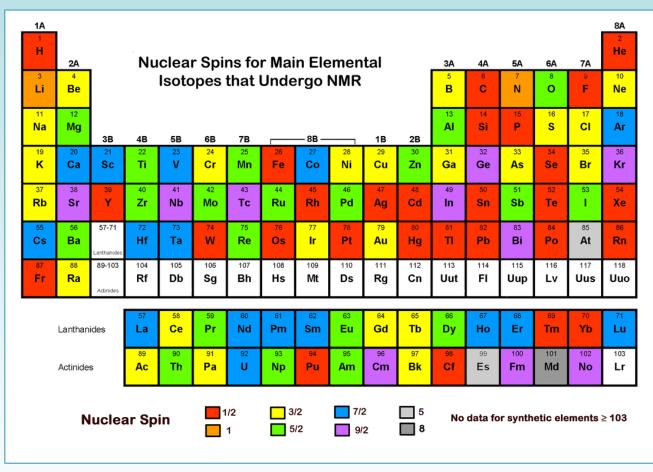
ALEC BEATON

CHE 357


SPRING 2018


• Nuclear Magnetic Resonance (NMR)

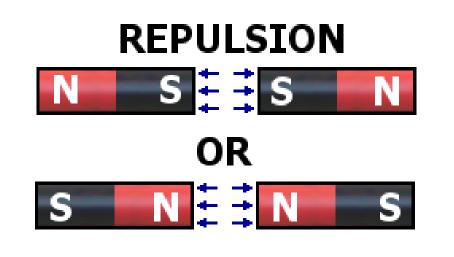
- Nuclear Magnetic Resonance (NMR)
 - Measures response of nuclei to radiofrequency (rf) input



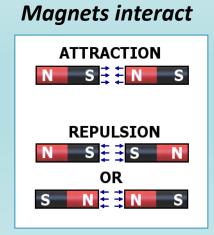
- Nucleus: collective consideration of protons and neutrons
- Collective rotation of protons and of neutrons define the nuclear spin *I* and corresponding nuclear spin angular momentum *I*ħ
- The spinning nucleus in turn generates a **nuclear magnetic moment** μ
- The **gyromagnetic ratio** γ is a proportionality constant between the nuclear magnetic moment and the nuclear spin angular momentum

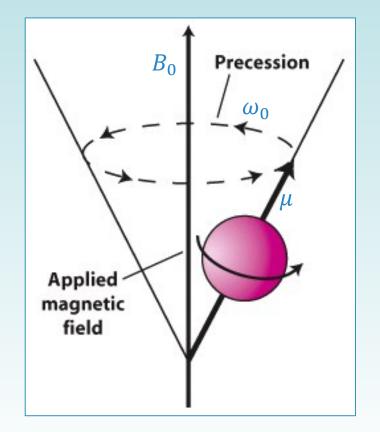
$$\gamma = \frac{\mu}{I\hbar}$$

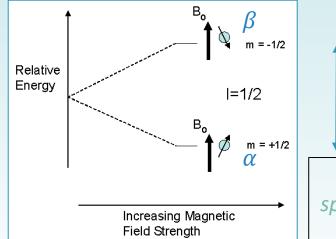
• We will consider nuclei with I = 1/2 (¹H, ¹³C, ¹⁵N)



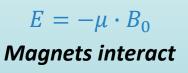
NMR: INTRODUCTION AND THEORY $E = -\mu \cdot B_0$

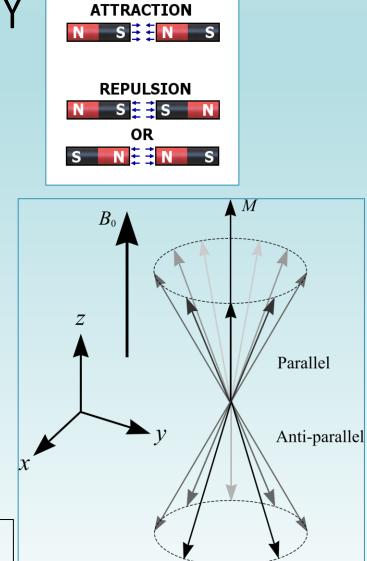

Magnets interact

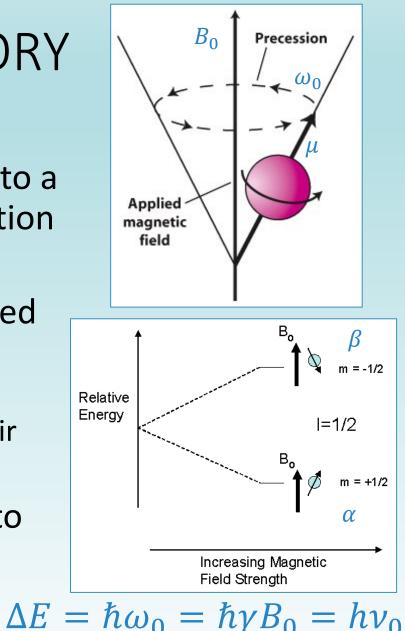



- Nuclear magnetic moment μ interacts with static magnetic field B_0
 - Moment μ precesses about the direction of B_0
 - Rate of precession (in radians/sec) is $\omega_0 = \gamma B_0$
- Conversion to Hz (1/sec) provides the Larmor frequency $v_0 = \frac{\omega_0}{2\pi}$

 $E = -\mu \cdot B_0$

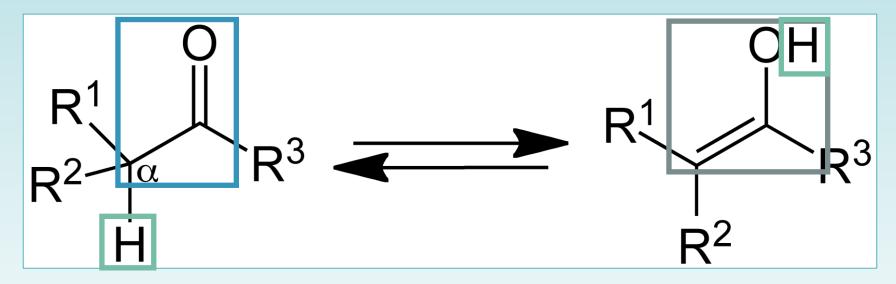



- Nuclear magnetic moment μ interacts with static magnetic field B_0
 - **Orientation** of μ with respect to B_0
 - Number of orientations available 21 + 1
 - For spin-1/2 systems (I = 1/2), two possible orientations:
 - Lower energy orientation/state $\alpha : \mu$ parallel to B_0
 - Higher energy orientation/state β : μ antiparallel to B_0

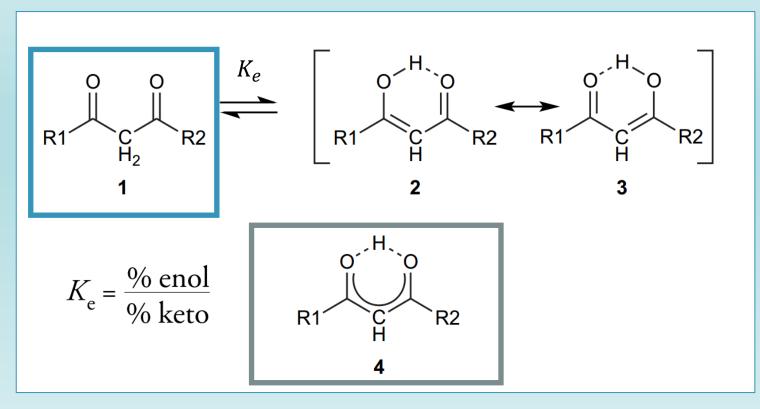

$$\Delta E = \hbar \omega_0 = \boxed{\hbar \gamma B_0 = h \nu_0} = \frac{\mu B_0}{I}$$

Hence, using the γ for the ¹H nucleus, a 400 MHz NMR spectrometer has a 9.4 T magnetic field, both of which specify the energy separation between the two spin-1/2 states

- To induce a transition from a lower energy state to a higher energy state, the nuclei are hit with radiation proportional to their Larmor frequency (*rf*)
- As we expect, the nuclei will not stay in the excited state indefinitely
 - As the excited nuclei relax back down to the lower energy state, the circular motion associated with their precession produces a *free induction decay* (FID)
- The Fourier transformation of the FID gives rise to the spectral peaks that we recognize as an NMR spectrum (*more on this in NMR II*)


Chemical Shift

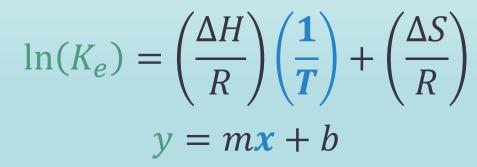
- Relates relative frequency of detected FID to frequency of the spectrometer
- In units of ppm
 - Numerator has units of Hz
 - Denominator has units of MHz


 $\delta = \frac{\nu_{observed} - \nu_{reference}}{\nu_{spectrometer}}$

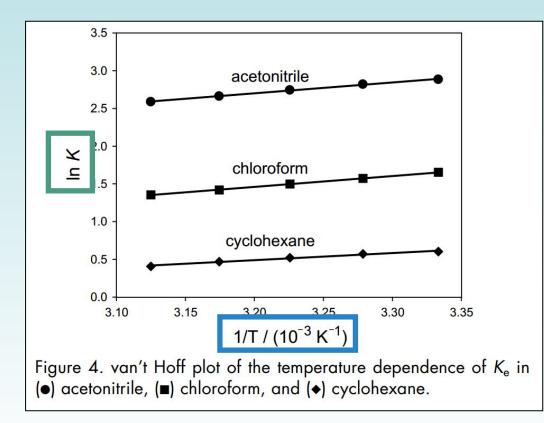
- Reference frequency is often an additive such as TMS or a peak clearly identifiable as the solvent
- Chemical shift relates information about the chemical environment
 - Downfield (higher shift), less shielding >> responding nucleus subjected to more of the magnetic field
 - Upfield (lower shift), more shielding >> responding nucleus subjected to less of the magnetic field

We will use ¹H NMR spectroscopy to study the **kinetics of 2,4-pentanedione isomerization** from its **keto** form to its **enol** form \circ Isomerization of keto/enol forms is alternatively called **tautomerization**

 In our case 2,4pentanedione has two ketone groups (1), and as such there exist two enol forms (2 and 3)



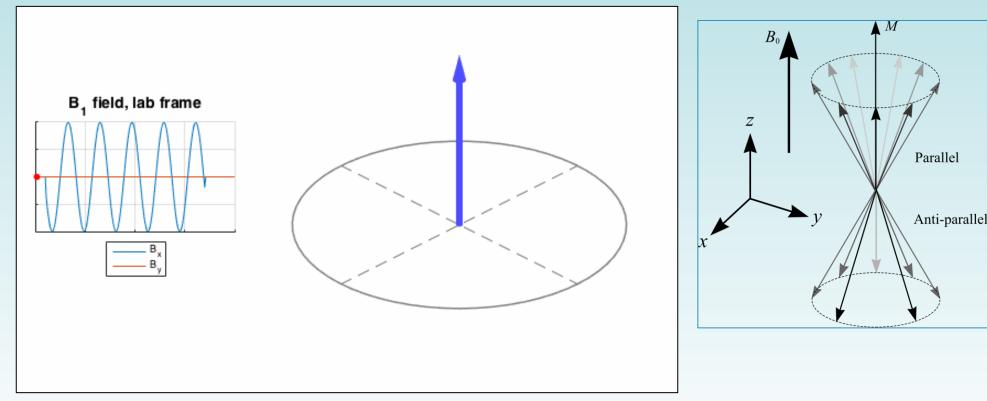
- The two enol forms **2** and **3** are averaged together into one structure **4** and we detect the peak for this structure in our experiments
- By carefully comparing the **peak integration** of **4** to **1** we can obtain the equilibrium constant K_e for tautomerization


- We will conduct several ¹H NMR experiments while varying the three following conditions independently:
 - 1. Concentration
 - 2. Solvent
 - 3. Temperature
- For each experiment, we will determine K_e
- The goal is to determine how each of the different conditions affects the tautomerization equilibrium based on our results

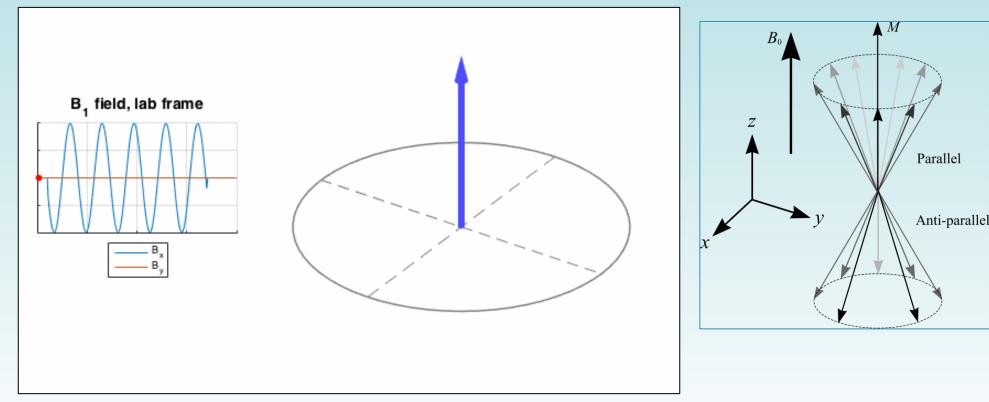
The solvent studies will use the following:
 Chloroform-d₃
 Benzene-d₆
 Acetone-d₆
 Dimethylsulfoxide-d₆
 Acetonitrile-d₃

0 **CCl4**

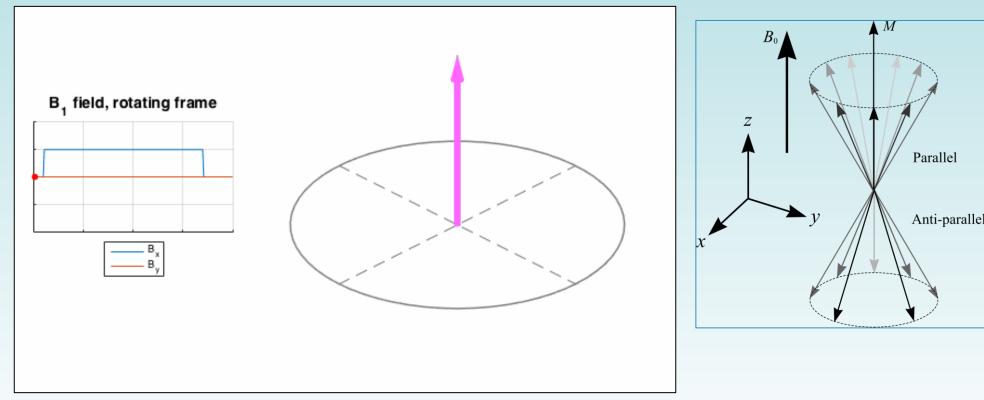
• In addition to calculating K_e for the variable temperature experiments, we will create a Van't Hoff plot by plotting $\ln(K_e)$ by $\frac{1}{\tau}$

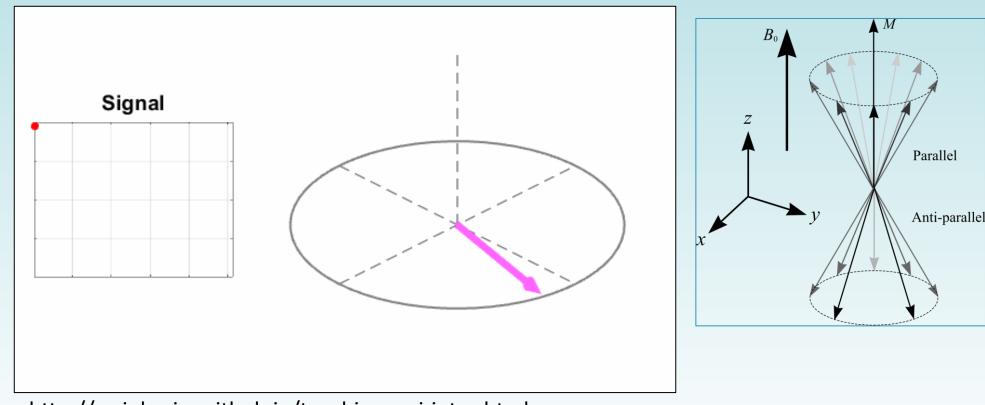

 A linear fit to these plots will allow us to determine thermodynamic information (ΔH and ΔS) about the equilibration

NMR II: LINESHAPE ANALYSIS OF REVERSIBLE HYDROLYSIS REACTION


ALEC BEATON CHE 357

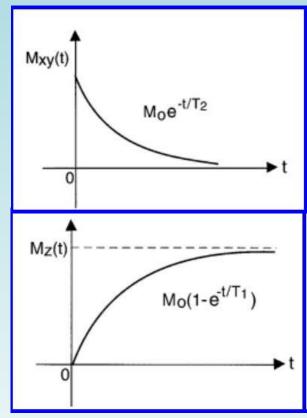
SPRING 2018


Applying a radio frequency (*Larmor frequency*) pulse B_1 disrupts equilibrium of nuclear spins (net magnetization, often M_0)


Recall the nuclei are already rotating (*spinning*) at the Larmor frequency given by the gyromagnetic ratio and external magnetic field $B_0 (\omega_0 = \gamma B_0)$

Defining a new coordinate frame (rotating frame) in which the x, y, and z axes are *rotating at the Larmor frequency* simplifies our analysis

After the **B**₁ **pulse**, the net magnetization returns to equilibrium, generating the NMR signal (*FID*) in the process, shown here in the **rotating frame**

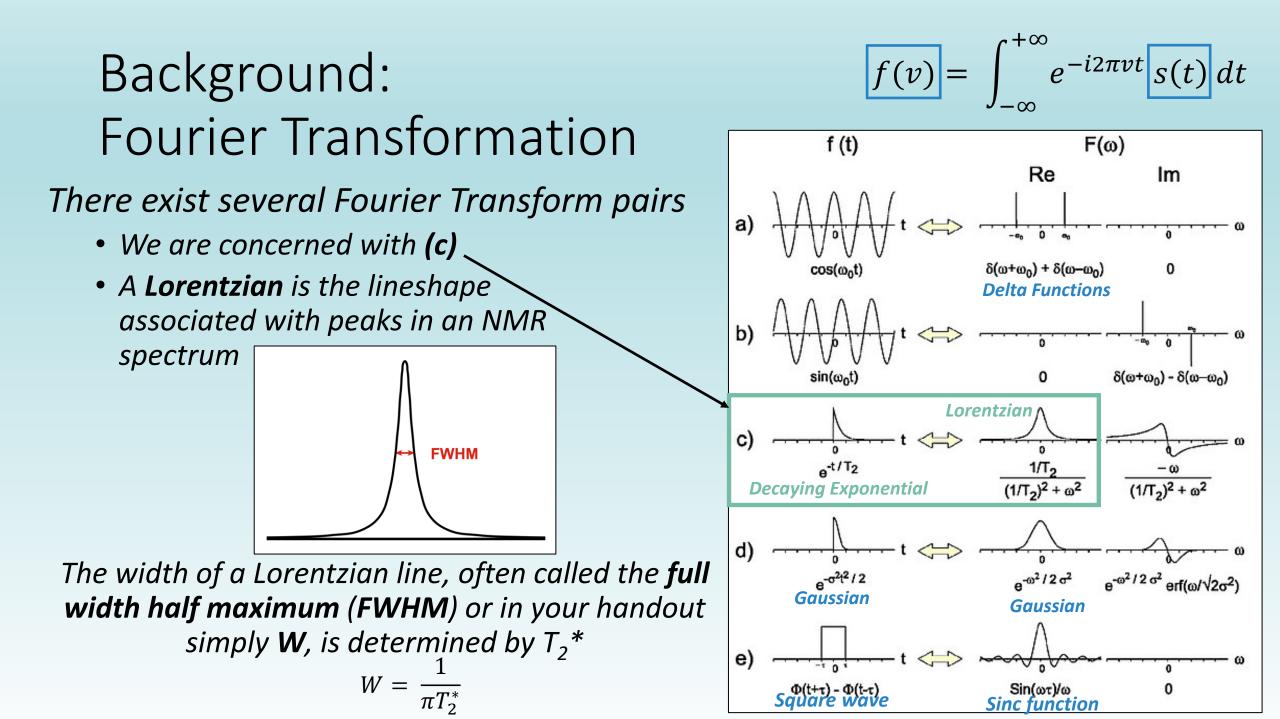


The FID is a *decaying exponential* e^{-t/T_2}

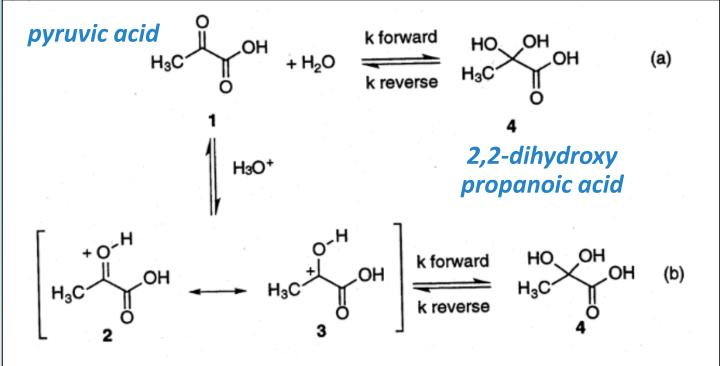
- It is the rate of decay of nuclear spins from an excited state to thermal equilibrium
- The *envelope* of the FID provides the *T*^{*} *relaxation*
 - T₂* denotes decaying signal due to factors other than the chemical system itself (e.g., inhomogeneity of the magnetic field)
- T₂ is called the *transverse relaxation* or *spin-spin relaxation*
 - T₂ characterizes how the net magnetization "leaves" the x-y or transverse plane to return to equilibrium along z. *It is a product of the chemical environment.*

Additionally ${\rm T}_1$ relaxation occurs

- T₁ is called the *longitudinal relaxation* or *spin-lattice relaxation*
 - T₁ characterizes how the net magnetization "returns" to orientation along the z-axis or the longitudinal plane, in line with the external magnetic field B₀; *it is also a product of the chemical environment.*
- Obtained by a different **pulse sequence** than that shown previously



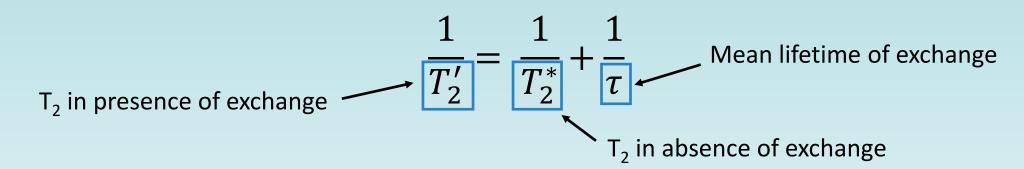
Background: Fourier Transformation


Fourier Transformation of the **FID** (time-domain) provides the familiar NMR spectrum (frequency-domain)

Signal in the frequency
$$f(v) = \int_{-\infty}^{+\infty} e^{-i2\pi vt} \frac{s(t)}{s(t)} dt$$

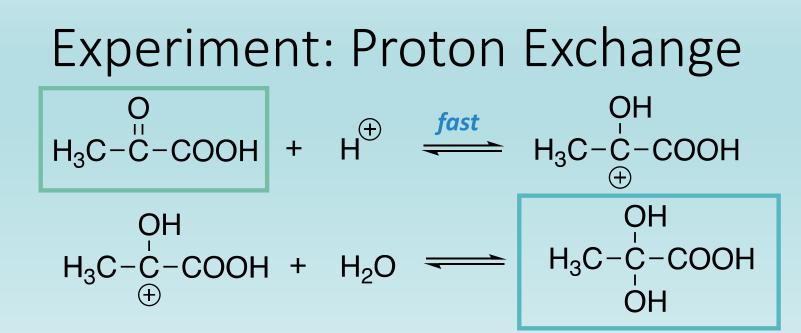
domain (NMR spectrum) Signal in the time domain (FID)

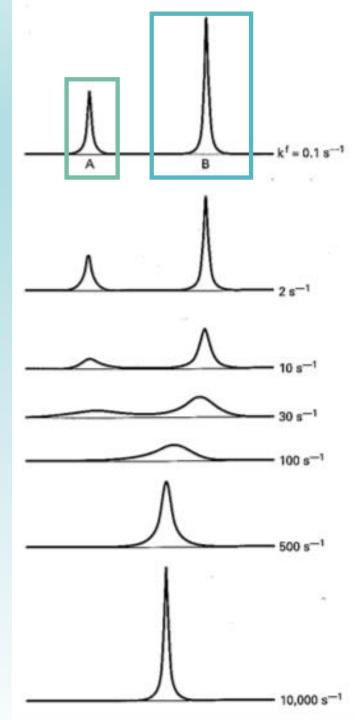
- Different representations of the same information
 - Extracts the frequency components f(v) of the oscillating exponential decay f(t)
- Fourier Transformations have various important properties, obey several rules


Experiment: Proton Exchange

- We can use NMR to analyze chemical system using either of 2 main principles: (1) Relative area of Lorentzian peaks provides relative concentrations of those nuclei (previous lab) (2) Linewidth of Lorentzian peaks provides information on nuclei lifetimes when exchange occurs
- We will be studying the proton exchange of pyruvic acid hydrolysis both in the *absence of acid catalyst* (a) and in the *presence of acid catalyst* (b)

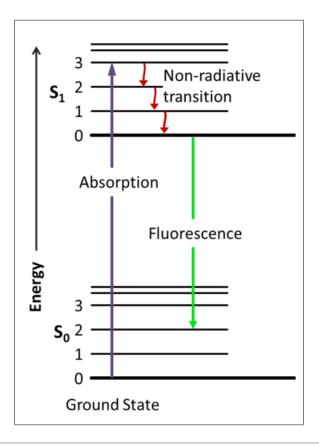
Experiment: Proton Exchange


• In the presence of proton exchange, we express T_2 as T_2' because it contains additional information $(\frac{1}{\tau})$


• From kinetic analysis described in handout, the mean lifetime of exchange is related to the uncatalyzed and catalyzed rate constants

 $\frac{1}{T_2'} = \frac{1}{T_2^*} + \frac{k_0}{T_2} + \frac{k_{H^+}}{T_2}$ Rate constant for uncatalyzed exchange Rate constant for

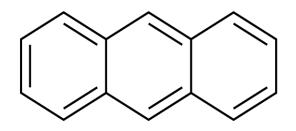
Rate constant for catalyzed exchange


- We will observe 3 proton resonant peaks
- Two peaks **A** and **B** (*right*) correspond to the pyruvic acid and hydrated pyruvic acid, respectively
- The third peak (not shown) is an averaged singlet due to rapid exchange of proton between **A**, **B**, and **water**
- As the rate of exchange between A and B increases, the resonance broadens until exchange timescale exceeds the timescale of T₂

Experiment: Proton Exchange

- We will study the effect of [H⁺] on the hydrolysis equilibrium:
 - Collect NMR spectra at varied concentrations of acid
 - Fit the resonance peaks to Lorentzian line to determine the linewidth (FWHM)
 - Excel sheet to assist in the fitting, FWHM determination
 - By plotting linewidth as a function of concentration, rate constants can be determined (for forward and reverse reactions)
 - Equilibrium constant can be calculated
- Additional considerations:
 - Assess the linear fit of FWHM vs [H⁺]
 - Chemical shift variations as function of [H⁺]

Fluorescence and Absorption of Polycyclic Aromatic Hydrocarbons

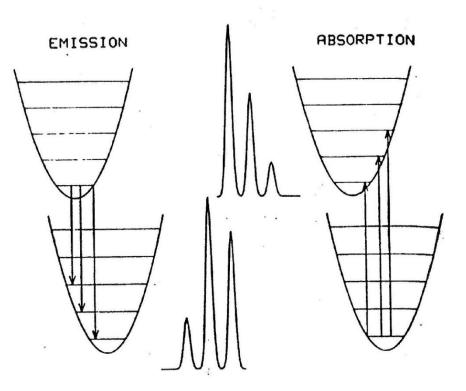


TA: ALEC BEATON

AABEATON@SYR.EDU

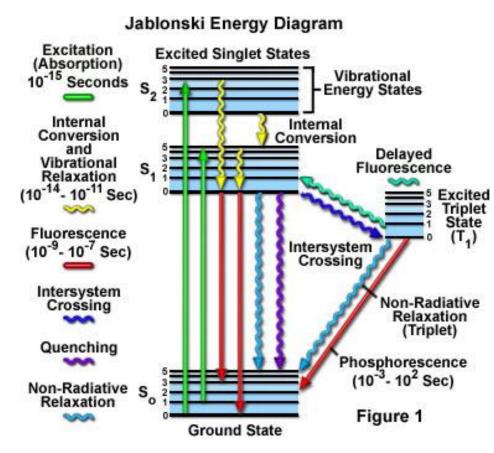
ADAPTED FROM EK (2017), PM(2015-16) & I. B. BERLEMAN, HANDBOOK OF FLUORESCENCE SPECTRA OF AROMATIC MOLECULES (SECOND EDITION, ACADEMIC PRESS, NEW YORK, 1971).

Polycyclic Aromatic Hydrocarbons


Figure 1. Anthracene emits a ~400-500 nm (blue) fluorescence under UV radiation

[1] Rivera-Figueroa, A. M et al. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis. *J. Chem. Educ.* **2004**, *81* (2), 242.

- Organic byproducts of various industrial processes (fossil fuel burning, biomass burning, cigarette smoke)[1]
- Environmental pollutants
- Adverse effects on health
- Network of π-electrons readily enables spectroscopic analysis
- As structural rigidity increases, fluorescence increases
- As rigidity decreases, vibrations increases and fluorescence weakens


Electronic Absorption and Fluorescence Fundamentals

- Quantized electronic, vibrational, and rotational levels
 - Electronic optical or UV
 - Vibrational IR
 - Rotational microwave

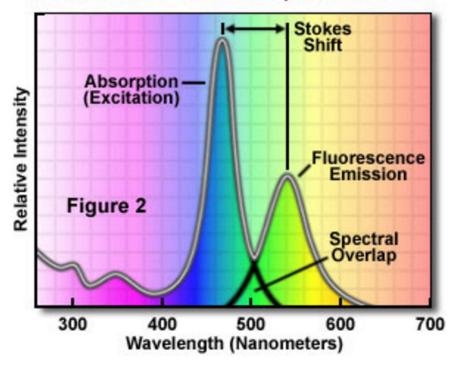
Jablonski Energy Diagrams

- For visualizing transitions, understanding spectra
- Electronic state manifolds populated with vibrational states
- Fluorescence:
 Excitation(S₀-S₁) → Relaxation(S₁)
 →Fluorescence(S₁-S₀)
- Phosphorescence: Excitation(S_0 - S_1) → Relaxation(S_1 - T_1) → Phosphorescence(T_1 - S_0)
- Phosphorescence has longer lifetime than fluorescence

Link to Interactive Jablonski diagram:

https://micro.magnet.fsu.edu/primer/lightandcolor/fluoroexcitation.html

Absorption & Fluorescence


Excitation

 Starts from lowest vibrational energy level of the ground electronic state, then excited to some higher electronic energy level

Emission

 Relaxes from excited state and emits light, the energy of the emitted photon is lower than that of the incident photons

Excitation and Emission Spectral Profiles

https://micro.magnet.fsu.edu/primer/lightandcolor/fluoro excitation.html

Beer-Lambert law relates light absorbed by sample to the concentration

$$A = \varepsilon c b$$

$$-\log\left(\frac{I}{I_o}\right) = A$$

$$I = I_o 10^{-\varepsilon cb}$$

- A Absorbance (unitless)
- ε Extinction coefficient (M⁻¹ cm⁻¹)
- c Concentration (M)
- b Path length (cm)
- *I* Intensity of detected light
- *I*_o Intensity of incident light

Fluorescence Intensities

• <u>Fluorescence intensity</u> (F) at a particular <u>excitation</u> (λ_x) and <u>emission wavelength</u> (λ_m) depends on the <u>light</u> <u>absorbed</u> (I_A) and <u>quantum yield</u> (ϕ) :

$$F(\lambda_x,\lambda_m) = I_A(\lambda_x)\phi(\lambda_m)$$

Quantum Yield

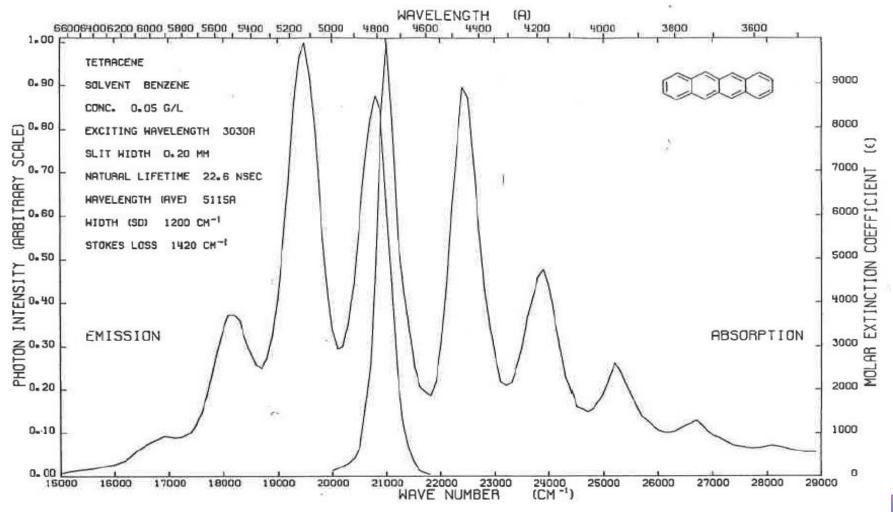
The fluorescence intensity (F) at a particular excitation (λ_x) and emission wavelength (λ_m) for a dilute solution containing a fluorophore is:

 $F(\lambda_{r},\lambda_{m}) = I_{o} 2.303 \varepsilon(\lambda_{r}) CL\phi(\lambda_{m})$

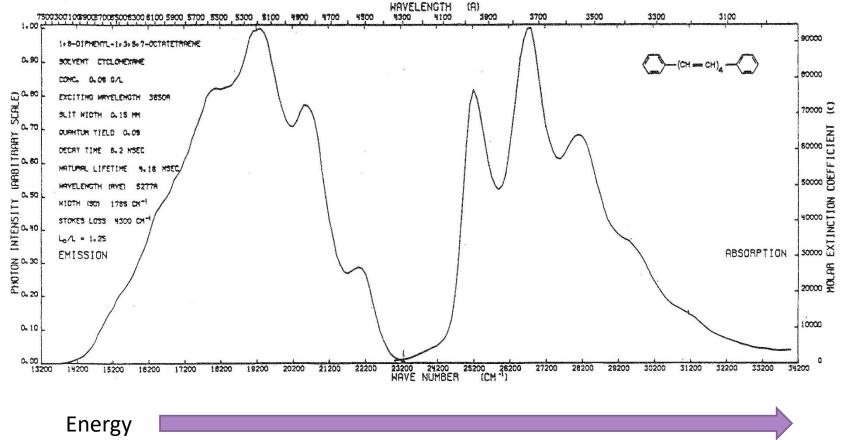
I_o – incident light intensity
 φ – quantum yield
 C – concentration
 ε – molar extinction coefficient
 L – path length

Quantum Yield

In the idealized case of a fluorescence quantum yield (Q_f) of 1, the rate of radiative emission (k_e) is the inverse of fluorescence lifetime (τ_f)

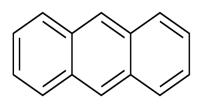

$$k_e = \frac{Q_f}{\tau_f} = \frac{1}{\tau_f}$$

In reality, there are competing non-radiative relaxation processes which will reduce the fluorescence quantum yield.

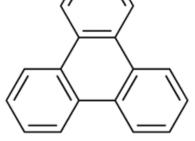

The observed fluorescence quantum yield is therefore described by the rate of radiative emission and the rate of non-radiative emission (k_{nr}).

$$Q_f = \frac{k_e}{k_e + k_{nr}}$$

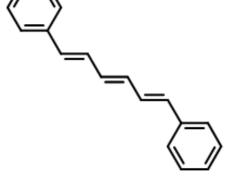
Emission and Excitation Graph

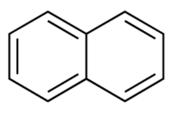


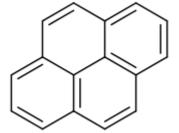
Unique Emission and Excitation Graph



In Lab


- Experimental
 - Dilute and concentrated samples of each
 - Excitation and emission scans
- Gaussian Calculations
 - Zindo & TD-DFT
- Anthracene
 - Looking at the vibrational structure of the absorption

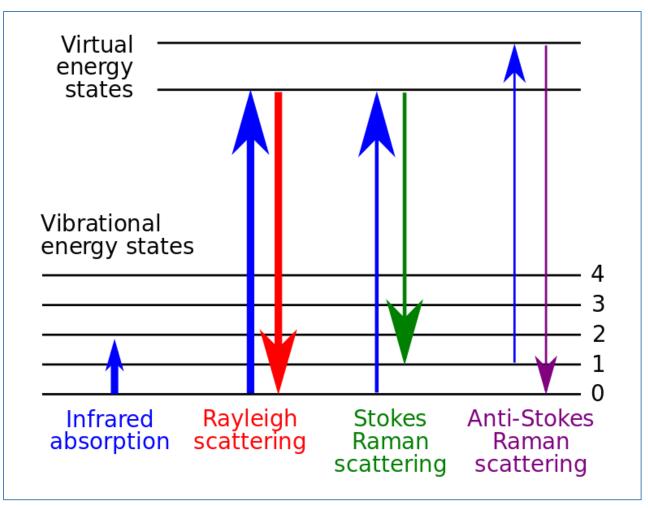

anthracene



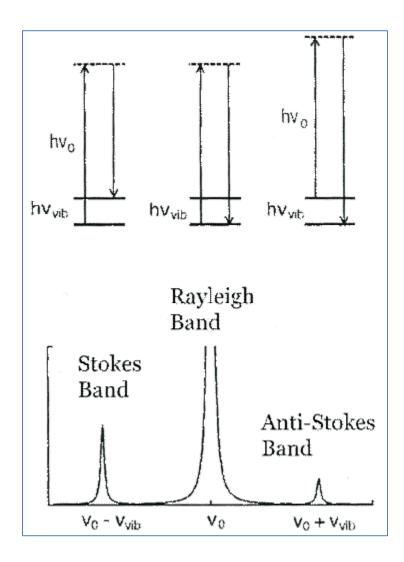
diphenylhexatriene

naphthalene

pyrene


Raman and Infrared of Mono-Substituted Cyclohexane Derivatives

CHE 357 Spring 2018 Alec Beaton


(Adpated from: Peter McLaughlin)

Raman vs. Absorbance (IR)

Raman utilizes 'virtual states'

Raman Bands

Raman vs. Infrared

- Change in polarizability
- Momentary distortion of the electrons
- Change in dipole moment
- Change in charge distribution during vibration

Raman vs. Infrared

Change in polarizability Change in dipole moment N IR tł Raman intensity IR transmission CH₃ CH₃ H₃C mesitylene Raman 2000 1800 1600 1400 1200 1000 IR Raman intensity IR transmission indene Raman 2000 1800 1600 1400 1200 1000 $\overline{\nu}$ or $\Delta \overline{\nu}$ (cm⁻¹)

Point Group Tables

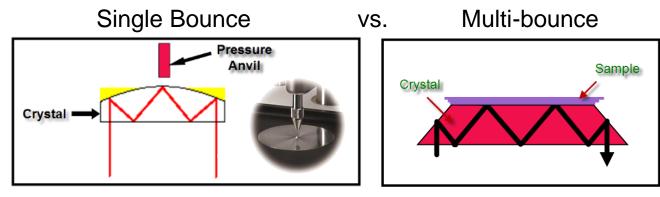
_						the D _{2h}					
	Ε	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$			
Ag	1	1	1	1	1	1	1	1		x^2, y^2, z^2	Raman
B_{1g}	1	1	-1	-1	1	1	-1	-1	R_z	xy	Active Modes
B _{2g}	1	-1	1	-1	1	-1	1	-1	R_y	xz	
B _{3g}	1	-1	-1	1	1	-1	-1	1	R_x	yz	
A _u	1	1	1	1	-1	-1	-1	-1			
B _{1u}	1	1	-1	-1	-1	-1	1	1	Z		
B _{2u}	1	-1	1	-1	-1	1	-1	1	у		IR Active Modes
B _{3u}	1	-1	-1	1	-1	1	1	-1	x		

Point Group Tables are easily accessible, like in Appendix C of the textbook.

Engel 3rd Ed. Pg. 709

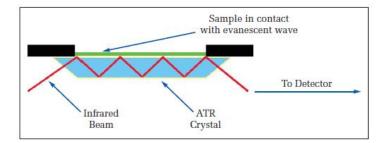
- In absorbance, a photon is ABSORBED by a molecule, and then re-emitted (usually) after some time period
- In Raman, a photon INTERACTS with a molecule, and either transfers some of its energy to the molecule (Stokes) or the molecule transfers some energy to the photon (Anti-Stokes).
 - Or there is no interaction and the photon just bounces off (Rayleigh Scattering)
- Thus, you can think of Raman as an 'instant' process, while emission after absorbance has a time period or a *lifetime*.

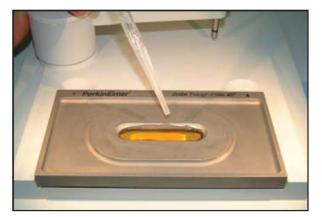
• Thus Raman is useful for a few reasons


Can use virtually any incident light source

- However must be careful, if you use too high of an energy light source you can have competition with absorption
- Can gain information about a molecule's vibrational levels
- Can give complementary information to IR spectroscopy.
- INSTANT! So conformations that would average out in NMR are apparent in Raman

Attenuated Total Reflectance - ATR


Attenuated Total Reflection



- Small sampling area
- Use for <u>strong</u> absorbers
 - –Black rubber, neat solvents
- Solid or liquid samples
 –Powders, droplets,
 - flakes

- Broad sampling area
- Larger contact with the sample
- Use for <u>weak</u> absorbers or <u>dilute</u> solutions

FT-IR Spectroscopy Attenuated Total Reflectance (ATR)

Figure 5. Using a pipette to add a liquid sample to a ZnSe HATR trough plate.

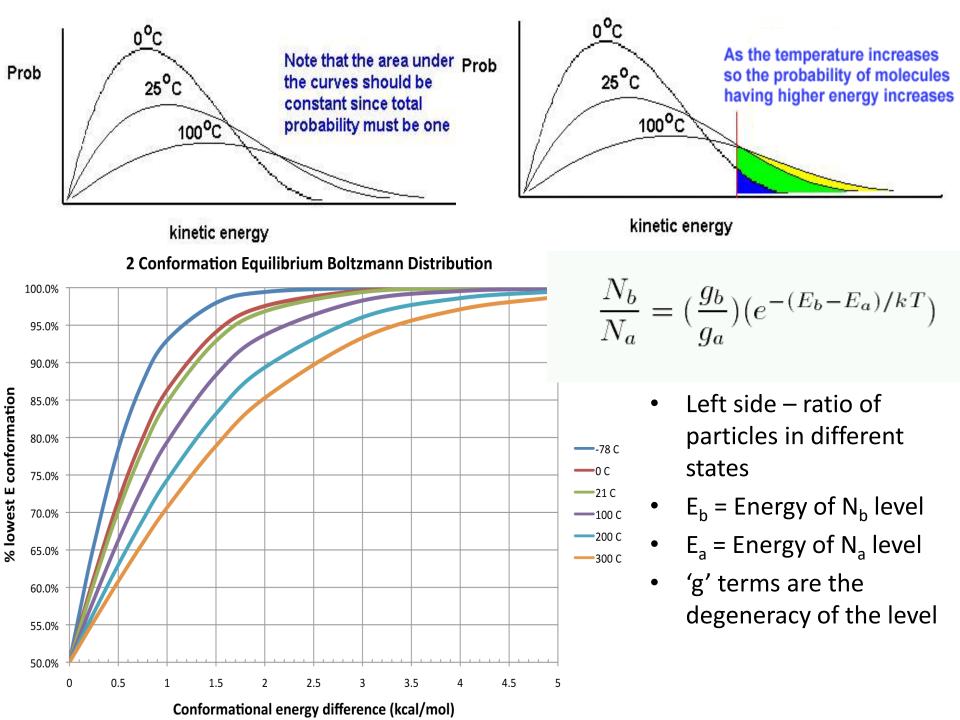
Figure 7. Applying pressure to a solid sample on the Universal diamond ATR top-plate.

Properties of Some Common ATR Crystals

Material	Range (cm ⁻¹)	Index	Penetration (μ) (at 45 [°] & 1000 cm ⁻¹)	Uses
Germanium	5,500 - 675	4	0.66	strongly absorbing samples
Silicon	8,900 - 1,500 & 360-120	3.4	0.85	resistant to base
AMTIR	11,000 - 725	2.5	1.77	resistant to acids
ZnSe	15,000 - 650	2.4	2.01	general use
Diamond	25,000 - 100	2.4	2.01	good for most samples. Needed for caustic or hard samples

Cyclohexane and the Experiment

- 1-chlorocyclohexane can exist in in two conformers
 - The chorine can be in the axial or equatorial position
 - What one do you think is more predominant?
- You will use Gaussian to perform an Opt&Freq calculation on both conformers
 - B3LYP functional, 6-311G(2d,2p) basis set
- You will then compare your calculated spectra to the measured spectra


Conformations of Methylcyclohexane Relative Potential Energy +7.6 equatorial axial Conformation

Assigning Peaks

- Once you have run both calculations and you have a Raman spectra, you will assign the observed peaks to each conformation
- If there is a peak that does not agree with either calculations, you should then make arguments for where the peak came from (overtones, impurities, etc)

Free Energies

- From the Gaussian output you should also compare the free energies, and show that one conformation is more likely to dominate.
- Provide a value for the ratio of the two forms
 Use kT and Boltzmann's equation
- The primary contribution to free energy is the enthlapy difference, however the vibrational calculations include an estimate of the vibrational contribution to the free energy difference

Recap

• Perform High resolution Raman and ATR-FTIR spectra of:

Chloro-	Amino-
Bromo-	Methyl-
lodo-	

- Perform theoretical calculations on the axial and equatorial placement of the derivative using Gaussian
- Compare the calculated spectra with the experimental spectra, and account for any inconsistencies