CHE 116 PRACTICE EXAM 2

1) A Brønsted-Lowry base is defined as a substance that ______.

A) increases [H⁺] when placed in H₂O

B) decreases [H⁺] when placed in H₂O

C) increases [OH⁻] when placed in H₂O

D) acts as a proton acceptor

E) acts as a proton donor

2) The magnitude of K_W indicates that ______.

A) water autoionizes very slowly

B) water autoionizes very quickly

C) water autoionizes only to a very small extent

D) the autoionization of water is exothermic

E) water is a weak acid

3) Of the acids in the table below, _____ is the strongest acid.

A) HOAc	Acid	Ka
B) HCHO2	HOAc	1.8×10^{-5}
C) HCIO	HCHO ₂	1.8×10^{-4}
D) HF	HClO	3.0×10^{-8}
E) HOAc and HCHO ₂	HF	6.8×10^{-4}

4) Of the acids in the table below, _____ has the strongest conjugate base.

A) HOAc	Acid	Ka
B) HCHO ₂	HOAc	1.8×10^{-5}
C) HCIO	HCHO ₂	1.8×10^{-4}
D) HF	HClO	3.0×10^{-8}
E) HOAc and HCHO ₂	HF	$6.8 \times 10{-4}$

5) A- is a weak base. Which equilibrium corresponds to the equilibrium constant Ka for HA?

A) HA (aq) + H₂O (I)
$$\rightleftharpoons$$
 H₂A⁺ (aq) + OH⁻ (aq)
B) A⁻ (aq) + H₃O⁺ (aq) \rightleftharpoons HA (aq) + H₂O (I)
C) HA (aq) + H₂O (I) \rightleftharpoons H₃O⁺ (aq) + A⁻ (aq)
D) A⁻ (aq) + H₂O (I) \rightleftharpoons HA (aq) + OH⁻ (aq)
E) A⁻ (aq) + OH⁻ (aq) \rightleftharpoons HOA²⁻ (aq)

6) Calculate the concentration of sodium hydroxide in a solution that has a pH of 11.00

- A) 1.0 × 10⁻¹¹
- B) 1.0 × 10⁻³
- C) 6.0 × 10⁻⁵
- D) 3.5 × 10⁻⁴
- E) none of the above

7) Which of the following aqueous solutions has the lowest [OH⁻]?

- A) a solution with a pOH of 12.0
- B) a 1×10^{-4} M solution of HNO₃
- C) a solution with a pH of 3.0
- D) pure water
- E) a 1×10^{-3} M solution of NH₄Cl

8) A 0.0035 M aqueous solution of a particular compound has pH = 2.46. The compound is

- A) a weak base
- B) a weak acid
- C) a salt
- D) a strong base
- E) a strong acid
- 9) What is the conjugate acid of CO_3^{2-} ?
- A) CO₂²⁻
- в) нсо₂²⁻
- C) H₂CO₃
- D) HCO3⁻
- E) none of the above

10) What is the pH of an aqueous solution at 25.0 °C that contains 3.98 × 10⁻⁹ M hydroxide ion? A) 8.40 B) 5.60 C) 9.00 D) 3.98 E) 7.00

11) The pH of a 0.25 M aqueous solution of hydrofluoric acid, HF, at 25.0 °C is 2.03. What is the value of K_a for HF? A) 2.0×10^{-9} B) 1.1×10^{-9} C) 6.0×10^{-5} D) 3.5×10^{-4} E) none of the above

12) The K_a of acetic acid (HC₂H₃O₂) is 1.8×10^{-5} . What is the pH at 25.0 °C of an aqueous solution that is 0.100 M in acetic acid? A) +2.87 B) -2.87 C) -11.13 D) +11.13 E) +6.61

13) The pH of a 0.55 M aqueous solution ammonia, NH₃, at 25.0 °C is 11.50. What is the value of K_b for NH₃? A) 2.0×10^{-9} B) 1.1×10^{-9} C) 6.0×10^{-5} D) 1.8×10^{-5} E) none of the above 14) The base-dissociation constant, K_b , for pyridine, C5H5N, is 1.4×10^{-9} . The acid-dissociation constant, K_a , for the pyridinium ion, C5H5NH⁺, is _____.

A) 1.0 × 10⁻⁷

B) 1.4 × 10⁻²³

- C) 7.1 × 10⁻⁴
- D) 1.4 × 10⁻⁵
- E) 7.1 × 10⁻⁶

15) What change will be caused by addition of a small amount of HCl to a solution containing fluoride ions and hydrogen fluoride?

A) The concentration of hydronium ions will increase significantly.

B) The concentration of fluoride ions will increase as will the concentration of hydronium ions.

C) The concentration of hydrogen fluoride will decrease and the concentration of fluoride ions will increase.

D) The concentration of fluoride ion will decrease and the concentration of hydrogen fluoride will increase.

E) The fluoride ions will precipitate out of solution as its acid salt.

16) Of the following solutions, which has the greatest buffering capacity?

A) 0.521 M HC2H3O2 and 0.217 M NaC2H3O2

B) 0.821 M HC₂H₃O₂ and 0.713 M NaC₂H₃O₂

C) 0.365M HC2H3O2 and 0.497 M NaC2H3O2

D) 0.121 M HC₂H₃O₂ and 0.116 M NaC₂H₃O₂

17) Which of the following could be added to a solution of acetic acid to prepare a buffer?

A) sodium acetate only

B) sodium acetate or sodium hydroxide

C) nitric acid only

D) hydrofluoric acid or nitric acid

E) sodium hydroxide only

18) Calculate the pH of a solution prepared by dissolving 0.150 mol of acetic acid and 0.300 mol of sodium acetate in water sufficient to yield 1.00 L of solution. The K_a of acetic acid is 1.76 ×

10⁻⁵.

- A) 2.516 B) 3.892
- C) 4.502
- D) 10.158
- E) 5.056

19) The concentration of fluoride ions in a saturated solution of barium fluoride is _____ M. The solubility product constant of BaF_2 is 1.7×10^{-6} .

A) 3.8×10^{-4} B) 3.0×10^{-3} C) 1.5×10^{-2} D) 7.5×10^{-3}

E) 1.4 × 10⁻⁴

20) What is the solubility of PbCl₂ in a 0.15 M solution of HCl? The K_{sp} of PbCl₂ is 1.6×10^{-5} .

A) 2.0×10^{-3} B) 1.1×10^{-4} C) 1.8×10^{-4} D) 7.1×10^{-4} E) 1.6×10^{-5}

21) Calculate the percent ionization of formic acid (HCO₂H) in a solution that is 0.322 M in formic acid and 0.178 M in sodium formate (NaHCO₂). The K_a of formic acid is 1.77×10^{-4} . A) 35.6 B) 0.101 C) 10.8 D) 1.03×10^{-3} E) 3.488 22) A solution is made by dissolving 0.23 mol of benzoic acid and 0.27 mol of sodium benzoate in water to yield 1.00 L of solution. The addition of 0.05 mol of NaOH to this buffer solution causes the pH to increase slightly. The pH does not increase drastically because the NaOH reacts with the _____ present in the buffer solution. The K_a of benzoic acid is 6.3×10^{-5} .

- A) H₂O
- B) H₃O⁺
- C) benzoate
- D) benzoic acid
- E) This is a <u>buffer</u> solution: the pH does not change upon addition of acid or base.

23) The K_a of acetic acid is 1.76×10^{-5} . The pH of a buffer prepared by combining 15.0 mL of 1.00 M potassium acetate and 50.0 mL of 1.00 M acetic acid is _____.

- A) 4.232
- B) 0.851
- C) 3.406
- D) 1.705
- E) 2.383

24) In which of the following aqueous solutions would you expect CuBr to have the highest solubility?

- A) 0.0100 M KBr
- B) 0.040 M CuNO3
- C) 0.030 M NaBr
- D) 0.020 M LiBr
- E) CuBr will have the same solubility in all solutions.

25) What is the molar solubility of silver carbonate (Ag₂CO₃) in water? The solubility-product constant for Ag₂CO₃ is 8.1×10^{-12} at 25 °C.

- A) 1.4 × 10-6
- B) 2.0 × 10-4
- C) 4.0 × 10-6
- D) 1.3 × 10-4
- E) 2.7 × 10-12

26) Calculate the pH of a solution prepared by dissolving 0.850 mol of NH₃ and 0.300 mol of NH₄Cl in water sufficient to yield 1.00 L of solution. The K_b of ammonia is 1.77×10^{-5} .

- A) 5.204
- B) 4.300
- C) 9.700
- D) 8.781
- E) 8.796

27) For the following acid-base reaction, please identify the correct acid-conjugate base pair for the forward reaction.

H₃PO₄ (aq) + H₂O (l) 🛁 _____ (aq) + _____ (aq)

A) Acid: H ₃ PO ₄ (aq)	Conjugate Base: OH⁻ (aq)
B) Acid: H ₂ O(l)	Conjugate Base: OH⁻
C) Acid: H ₃ O ⁺ (aq)	Conjugate Base: OH⁻ (aq)
D) Acid: H ₃ PO ₄ (aq)	Conjugate Base: H ₂ PO ₄ (aq)
E) Acid: H ₃ PO ₄ (aq)	Conjugate Base: H ₃ O ⁺ (aq)

28) Which of the following diagrams represents a solution of NaF.

A) solution AB) solution BC) solution CD) solution B and CE) none of the above

Key Equations:

$$K_{w} = [H_{3}O^{+}][OH^{-}] = 1.0 \times 10^{-14}$$

$$pH = -log[H_{3}O^{+}]$$

$$pOH = -log[OH^{-}]$$

$$pH + pOH = 14$$

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$

$$K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$$
Percent Ionization = $\frac{[H_{3}O^{+}]equilibrium}{[HA]initial} \times 100$

$$K_{a} \times K_{b} = K_{w}$$

$$pH = pK_{a} + log \frac{[Base]}{[Acid]}$$

Periodic Table of the Elements

Main Group Representative Elements								Main Group Representative Elements										
	1 A ^a 1		1															8A 18
1	1 H 1.00794	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	2 He 4.002602
2	3 Li	4 Be			Metals		Me	talloids		Nonme	tals		5 B	6 C	7 N	8 0	9 F	10 Ne
	6.941	9.012182					Transitio	n metals					10.811	12.0107	14.0067	15.9994	18.998403	20.1797
	11	12	[12.14704	1200300	100.00.000		<i></i>	0.0		0.000		13	14	15	16	17	18
3	INa 22.080770	Mg	3B	4B 4	5B	6B	7B 7	8	- 8B -	10	1B 11	2B 12	AI	31	P	32.065	25,452	Ar 20.049
	10	24.3030	21	22	23	24	25	26	2.7	28	29	30	31	32	33	32.065	35.455	39.948
4	K	Ča	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.0983	40.078	44.955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.64	74.92160	78.96	79.904	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.4678	87.62	88.90585	91.224	92.90638	95.94	[98]	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.293
	55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
	132.90545	137.327	174.967	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	[208.98]	[209.99]	[222.02]
-	87	88 D	103	104	105	106	107	108	109	110 D	111	112	113	114	115	116	117	118
1	Fr	ка	Lr	KI	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	120.13	10001	12001	12023	**	100.01
	[223.02]	[226.03]	[202.11]	[261.11]	[262.11]	[266.12]	[264.12]	[269.13]	[268.14]	[281.15]	[272.15]	[285]	[284]	[289]	[288]	[292]	[294]	[294]
				57	58	59	60	61	62	63	64	65	66	67	68	69	70	
	Lanthanide series		eries	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	
				138.9055	140.116	140.90765	144.24	[145]	150.36	151.964	157.25	158.92534	162.50	164.93032	167.259	168.93421	173.04	1
				89	90	91	92	93	94	95	96	97	98	99	100	101	102	
	Actinide series		es	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	
			[227.03]	232.0381	231.03588	238.02891	[237.05]	[244.06]	[243.06]	[247.07]	[247.07]	[251.08]	[252.08]	[257.10]	[258.10]	[259.10]		