CHE 116 PRACTICE EXAM 2

1) $A B r \emptyset n s t e d-L o w r y ~ b a s e ~ i s ~ d e f i n e d ~ a s ~ a ~ s u b s t a n c e ~ t h a t ~$ \qquad .
A) increases $\left[\mathrm{H}^{+}\right]$when placed in $\mathrm{H}_{2} \mathrm{O}$
B) decreases $\left[\mathrm{H}^{+}\right]$when placed in $\mathrm{H}_{2} \mathrm{O}$
C) increases $\left[\mathrm{OH}^{-}\right]$when placed in $\mathrm{H}_{2} \mathrm{O}$
D) acts as a proton acceptor
E) acts as a proton donor
2) The magnitude of K_{w} indicates that \qquad .
A) water autoionizes very slowly
B) water autoionizes very quickly
C) water autoionizes only to a very small extent
D) the autoionization of water is exothermic
E) water is a weak acid
3) Of the acids in the table below, \qquad is the strongest acid.
A) HOAc
B) HCHO_{2}
C) HClO
D) HF
E) HOAc and HCHO_{2}

Acid	K_{a}
HOAc	1.8×10^{-5}
HCHO_{2}	1.8×10^{-4}
HClO	3.0×10^{-8}
HF	6.8×10^{-4}

4) Of the acids in the table below, \qquad has the strongest conjugate base.
A) HOAc
B) HCHO_{2}
C) HClO
D) HF
E) HOAc and HCHO_{2}

Acid	K_{a}
HOAc	1.8×10^{-5}
HCHO_{2}	1.8×10^{-4}
HClO	3.0×10^{-8}
HF	6.8×10^{-4}

5) A - is a weak base. Which equilibrium corresponds to the equilibrium constant K_{a} for HA?
A) $\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{2} \mathrm{~A}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
B) $\mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ (I)
C) $\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$
D) $\mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HA}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
E) $\mathrm{A}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{HOA}^{2-}(\mathrm{aq})$
6) Calculate the concentration of sodium hydroxide in a solution that has a pH of 11.00
A) 1.0×10^{-11}
B) 1.0×10^{-3}
C) 6.0×10^{-5}
D) 3.5×10^{-4}
E) none of the above
7) Which of the following aqueous solutions has the lowest [OH^{-}]?
A) a solution with a pOH of 12.0
B) a $1 \times 10^{-4} \mathrm{M}$ solution of HNO_{3}
C) a solution with a pH of 3.0
D) pure water
E) a $1 \times 10^{-3} \mathrm{M}$ solution of $\mathrm{NH}_{4} \mathrm{Cl}$
8) A 0.0035 M aqueous solution of a particular compound has $\mathrm{pH}=2.46$. The compound is
\qquad .
A) a weak base
B) a weak acid
C) a salt
D) a strong base
E) a strong acid
9) What is the conjugate acid of $\mathrm{CO}_{3}{ }^{2-}$?
A) $\mathrm{CO}_{2}{ }^{2-}$
B) $\mathrm{HCO}_{2}{ }^{2-}$
C) $\mathrm{H}_{2} \mathrm{CO}_{3}$
D) HCO_{3}^{-}
E) none of the above
10) What is the pH of an aqueous solution at $25.0^{\circ} \mathrm{C}$ that contains $3.98 \times 10^{-9} \mathrm{M}$ hydroxide ion? A) 8.40
B) 5.60
C) 9.00
D) 3.98
E) 7.00
11) The pH of a 0.25 M aqueous solution of hydrofluoric acid, HF , at $25.0^{\circ} \mathrm{C}$ is 2.03 . What is the value of K_{a} for HF ?
A) 2.0×10^{-9}
B) 1.1×10^{-9}
C) 6.0×10^{-5}
D) 3.5×10^{-4}
E) none of the above
12) The K_{a} of acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ is 1.8×10^{-5}. What is the pH at $25.0^{\circ} \mathrm{C}$ of an aqueous solution that is 0.100 M in acetic acid?
A) +2.87
B) -2.87
C) -11.13
D) +11.13
E) +6.61
13) The pH of a 0.55 M aqueous solution ammonia, NH_{3}, at $25.0^{\circ} \mathrm{C}$ is 11.50 . What is the value of Kb_{b} for NH_{3} ?
A) 2.0×10^{-9}
B) 1.1×10^{-9}
C) 6.0×10^{-5}
D) 1.8×10^{-5}
E) none of the above
14) The base-dissociation constant, K_{b}, for pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, is 1.4×10^{-9}. The acid-dissociation constant, K_{a}, for the pyridinium ion, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$, is \qquad .
A) 1.0×10^{-7}
B) 1.4×10^{-23}
C) 7.1×10^{-4}
D) 1.4×10^{-5}
E) 7.1×10^{-6}
15) What change will be caused by addition of a small amount of HCl to a solution containing fluoride ions and hydrogen fluoride?
A) The concentration of hydronium ions will increase significantly.
B) The concentration of fluoride ions will increase as will the concentration of hydronium ions.
C) The concentration of hydrogen fluoride will decrease and the concentration of fluoride ions will increase.
D) The concentration of fluoride ion will decrease and the concentration of hydrogen fluoride will increase.
E) The fluoride ions will precipitate out of solution as its acid salt.
16) Of the following solutions, which has the greatest buffering capacity?
A) $0.521 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $0.217 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
B) $0.821 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $0.713 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
C) $0.365 \mathrm{M} \mathrm{HC} 2 \mathrm{H}_{3} \mathrm{O}_{2}$ and $0.497 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
D) $0.121 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $0.116 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
17) Which of the following could be added to a solution of acetic acid to prepare a buffer?
A) sodium acetate only
B) sodium acetate or sodium hydroxide
C) nitric acid only
D) hydrofluoric acid or nitric acid
E) sodium hydroxide only
18) Calculate the pH of a solution prepared by dissolving 0.150 mol of acetic acid and 0.300 mol of sodium acetate in water sufficient to yield 1.00 L of solution. The K_{a} of acetic acid is $1.76 \times$ 10^{-5}.
A) 2.516
B) 3.892
C) 4.502
D) 10.158
E) 5.056
19) The concentration of fluoride ions in a saturated solution of barium fluoride is \qquad M. The solubility product constant of BaF_{2} is 1.7×10^{-6}.
A) 3.8×10^{-4}
B) 3.0×10^{-3}
C) 1.5×10^{-2}
D) 7.5×10^{-3}
E) 1.4×10^{-4}
20) What is the solubility of PbCl_{2} in a 0.15 M solution of HCl ? The K_{sp} of PbCl_{2} is 1.6×10^{-5}.
A) 2.0×10^{-3}
B) 1.1×10^{-4}
C) 1.8×10^{-4}
D) 7.1×10^{-4}
E) 1.6×10^{-5}
21) Calculate the percent ionization of formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$ in a solution that is 0.322 M in formic acid and 0.178 M in sodium formate $\left(\mathrm{NaHCO}_{2}\right)$. The K_{a} of formic acid is 1.77×10^{-4}.
A) 35.6
B) 0.101
C) 10.8
D) 1.03×10^{-3}
E) 3.488
22) A solution is made by dissolving 0.23 mol of benzoic acid and 0.27 mol of sodium benzoate in water to yield 1.00 L of solution. The addition of 0.05 mol of NaOH to this buffer solution causes the pH to increase slightly. The pH does not increase drastically because the NaOH reacts with the \qquad present in the buffer solution. The K_{a} of benzoic acid is 6.3×10^{-5}.
A) $\mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{H}_{3} \mathrm{O}^{+}$
C) benzoate
D) benzoic acid
E) This is a buffer solution: the pH does not change upon addition of acid or base.
23) The K_{a} of acetic acid is 1.76×10^{-5}. The pH of a buffer prepared by combining 15.0 mL of 1.00 M potassium acetate and 50.0 mL of 1.00 M acetic acid is \qquad .
A) 4.232
B) 0.851
C) 3.406
D) 1.705
E) 2.383
24) In which of the following aqueous solutions would you expect CuBr to have the highest solubility?
A) 0.0100 M KBr
B) $0.040 \mathrm{M} \mathrm{CuNO}_{3}$
C) 0.030 M NaBr
D) 0.020 M LiBr
E) CuBr will have the same solubility in all solutions.
25) What is the molar solubility of silver carbonate $\left(\mathrm{Ag}_{2} \mathrm{CO}_{3}\right)$ in water? The solubility-product constant for $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ is $8.1 \times 10-12$ at $25^{\circ} \mathrm{C}$.
A) 1.4×10^{-6}
B) 2.0×10^{-4}
C) 4.0×10^{-6}
D) 1.3×10^{-4}
E) 2.7×10^{-12}
26) Calculate the pH of a solution prepared by dissolving 0.850 mol of NH_{3} and 0.300 mol of $\mathrm{NH}_{4} \mathrm{Cl}$ in water sufficient to yield 1.00 L of solution. The K_{b} of ammonia is $1.77 \times 10-5$.
A) 5.204
B) 4.300
C) 9.700
D) 8.781
E) 8.796
27) For the following acid-base reaction, please identify the correct acid-conjugate base pair for the forward reaction.

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \ldots \quad(\mathrm{aq})+\ldots \quad(\mathrm{aq})
$$

A) Acid: $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \quad$ Conjugate Base: $\mathrm{OH}^{-}(\mathrm{aq})$
B) Acid: $\mathrm{H}_{2} \mathrm{O}$ (I) Conjugate Base: OH^{-}
C) Acid: $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad$ Conjugate Base: $\mathrm{OH}^{-}(\mathrm{aq})$
D) Acid: $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \quad$ Conjugate Base: $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$
E) Acid: $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \quad$ Conjugate Base: $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
28) Which of the following diagrams represents a solution of NaF .

Solution A (4) Na^{+}

Solution B
\square

Solution C
A) solution A
B) solution B
C) solution C
D) solution B and C
E) none of the above

Key Equations:

$$
\begin{gathered}
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
p \mathrm{OH}=-\log \left[\mathrm{OH}^{-}\right] \\
p H+p \mathrm{OH}=14 \\
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
K_{b}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]} \\
\text { Percent Ionization }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {equilibrium }}{[\mathrm{HA}] \text { initial }} \times 100 \\
K_{a} \times K_{b}=K_{w} \\
p H=p K_{a}+\log \frac{[\text { Base }]}{[\text { Acid }]}
\end{gathered}
$$

Periodic Table of the Elements

	Main presentati	Group ve Elem											Main Group Representative Elements					
	$1 \mathrm{~A}^{\mathrm{a}}$																	$\begin{aligned} & 8 \mathrm{~A} \\ & 18 \end{aligned}$
1	$\begin{gathered} 1 \\ \mathbf{H} \\ 1.00794 \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ 2 \end{gathered}$											$\begin{aligned} & 3 \mathrm{~A} \\ & 13 \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} \\ & 14 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \\ & 15 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~A} \\ & 16 \end{aligned}$	$\begin{aligned} & 7 \mathrm{~A} \\ & 17 \end{aligned}$	2 He 4.002602
2	$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.941 \end{gathered}$	$\begin{gathered} 4 \\ \mathbf{B e} \\ 9.012182 \end{gathered}$			Metals		\square Me Transitio	alloids metals		Nonme	tals		$\begin{array}{\|c\|} \hline 5 \\ \mathbf{B} \\ 10.811 \\ \hline \end{array}$	$\begin{gathered} 6 \\ \text { C } \\ 12.0107 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.0067 \end{gathered}$	$\begin{gathered} 8 \\ \text { O } \\ 15.9994 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 18.998403 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.1797 \end{gathered}$
3	$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.989770 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.3050 \end{gathered}$	$\begin{aligned} & 3 \mathrm{~B} \\ & 3 \end{aligned}$	$\begin{gathered} 4 \mathrm{~B} \\ 4 \end{gathered}$	$\begin{gathered} \text { 5B } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 6 B \\ 6 \end{gathered}$	$\begin{gathered} 7 B \\ 7 \end{gathered}$	8	$\begin{gathered} -8 \mathrm{~B} \\ 9 \end{gathered}$	10	$\begin{aligned} & 1 \mathrm{~B} \\ & 11 \end{aligned}$	$\begin{aligned} & 2 B \\ & 12 \end{aligned}$	13 Al 26.981538	$\begin{array}{\|c} 14 \\ \mathbf{S i} \\ \hline 28.0855 \end{array}$	15 \mathbf{P} 30.973761	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.065 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.453 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.948 \end{gathered}$
4	$\begin{gathered} 19 \\ \mathbf{K} \\ 39.0983 \end{gathered}$	$\begin{gathered} 20 \\ \text { Ca } \\ 40.078 \end{gathered}$	21 $\mathbf{S c}$ 44.955910	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.867 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.9415 \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ 51.9961 \end{gathered}$	25 $\mathbf{M n}$ 54.938049	$\begin{gathered} 26 \\ \text { Fe } \\ 55.845 \end{gathered}$	$\begin{array}{\|c\|} \hline 27 \\ \text { Co } \\ 58.933200 \end{array}$	$\begin{array}{\|c\|} \hline 28 \\ \mathbf{N i} \\ 58.6934 \\ \hline \end{array}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.546 \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.723 \\ \hline \end{gathered}$	$\begin{gathered} \hline 32 \\ \mathbf{G e} \\ 72.64 \end{gathered}$	$\begin{array}{\|c\|} \hline 33 \\ \text { As } \\ 74.92160 \\ \hline \end{array}$	$\begin{gathered} 34 \\ \text { Se } \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.904 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
5	$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.4678 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.90585 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.224 \end{gathered}$	$\begin{array}{\|c\|} \hline 41 \\ \mathbf{N b} \\ 92.90638 \\ \hline \end{array}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \\ \hline \end{gathered}$	43 Tc [98]	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{array}{\|c\|} \hline 45 \\ \mathbf{R h} \\ 102.90550 \\ \hline \end{array}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.8682 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 48 \\ \text { Cd } \\ 112.411 \\ \hline \end{array}$	$\begin{gathered} 49 \\ \text { In } \\ 114.818 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.710 \\ \hline \end{gathered}$	51 $\mathbf{S b}$ 121.760	$\begin{gathered} 52 \\ \mathbf{T e} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.90447 \\ \hline \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.293 \\ \hline \end{gathered}$
6	$\begin{gathered} 55 \\ \text { Cs } \\ 132.90545 \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.327 \\ \hline \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.967 \end{gathered}$	$\begin{gathered} 72 \\ \text { Hf } \\ 178.49 \end{gathered}$	$\begin{array}{\|c\|} \hline 73 \\ \mathbf{T a} \\ 180.9479 \\ \hline \end{array}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.84 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.207 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.23 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.217 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.078 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 196.96655 \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	81 Tl 204.3833	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98038 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ {[208.98]} \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ {[209.99]} \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ {[222.02]} \end{gathered}$
7	$\begin{gathered} 87 \\ \mathbf{F r} \\ {[223.02]} \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ {[226.03]} \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ {[262.11]} \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ {[261.11]} \end{gathered}$	$\begin{gathered} 105 \\ \text { Db } \\ {[262.11]} \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ {[266.12]} \end{gathered}$	$\begin{gathered} 107 \\ \mathbf{B h} \\ {[264.12]} \end{gathered}$	$\begin{gathered} 108 \\ \text { Hs } \\ {[269.13]} \end{gathered}$	$\begin{gathered} 109 \\ \mathbf{M t} \\ {[268.14]} \end{gathered}$	110 Ds $[281.15]$	111 $\mathbf{R g}$ $[272.15]$	$\begin{gathered} 112 \\ \text { Cn } \\ {[285]} \end{gathered}$	$\begin{gathered} 113 \\ {[284]} \end{gathered}$	114 [289]	115 [288]	$\begin{array}{r} 116 \\ {[292]} \\ \hline \end{array}$	$\begin{gathered} 117 \\ * * \\ {[294]} \end{gathered}$	$\begin{gathered} 118 \\ {[294]} \end{gathered}$

Lanthanide series			$\begin{array}{\|c\|} \hline 59 \\ \text { Pr } \\ 140.90765 \end{array}$	60 Nd 144.24	$\begin{gathered} 61 \\ \mathbf{P m} \\ {[145]} \\ \hline \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.36 \end{gathered}$			$\begin{array}{\|c\|} \hline 65 \\ \mathbf{T b} \\ 158.92534 \\ \hline \end{array}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \\ \hline \end{gathered}$	67 Ho 164.93032			$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \\ \hline \end{gathered}$
Actinide series	$\begin{gathered} 89 \\ \mathbf{A c} \\ {[227.03]} \end{gathered}$	90 Th 232.0381	$\begin{array}{\|c\|} \hline 91 \\ \mathbf{P a} \\ 231.03588 \\ \hline \end{array}$	92 \mathbf{U} 238.02891	$\begin{gathered} 93 \\ \mathbf{N} \mathbf{p} \\ {[237.05]} \end{gathered}$	$\begin{gathered} 94 \\ \mathbf{P u} \\ {[244.06]} \end{gathered}$	$\begin{array}{\|c\|} \hline 95 \\ \text { Am } \\ {[243.06]} \\ \hline \end{array}$	$\begin{gathered} 96 \\ \mathrm{Cm} \\ {[247.07]} \end{gathered}$	$\begin{gathered} 97 \\ \mathbf{B k} \\ {[247.07]} \\ \hline \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ {[251.08]} \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ {[252.08]} \end{gathered}$	$\begin{gathered} 100 \\ \text { Fm } \\ {[257.10]} \end{gathered}$	$\begin{gathered} 101 \\ \text { Md } \\ {[258.10]} \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ {[259.10]} \end{gathered}$

